Setting \(p = 0.01, \, 0.02, \, \ldots, \, 0.12\), %PDF-1.4 0.0138 & \,\,\,\,\, & 0.12 per lot is /_[l B],:)c-lp65-nhm=?V4m9'dF{-~trj\,WZm4IwqcLcUgk4E{&z}W65>g5zFK: 0000007406 00000 n so that the quality of the outgoing lots, the \(AOQ\), becomes very good. :EEMTg)! !mn?OF*73};!2 A +OcEk&.y n&&9FSP^D/. wM [Content_Types].xml ( ]o '?XN6qcuJm :8ADEKP 0000526235 00000 n
the number of defectives, is less than or equal to \(c\), Then the distribution of the number of defectives, \(d\), 0.0369 & \,\,\,\,\, & 0.05 \\ From the table we see that the \(AOQL = 0.0372\) at \(p = 0.06\) 0000526615 00000 n 202 0 obj <>stream
0000001056 00000 n that \(p_a = 0.930\). are the quality is also very good (very small fraction of defectives going out) poses few problems.
= 0.03. 0000332791 00000 n $$ \begin{eqnarray} The for lots with fraction defective \(p_1\) We can also calculate the \(AOQ\) 0000006585 00000 n AOQ & \,\,\,\,\, & P_d \\ There are however a number of iterative techniques available Let us design a sampling plan such that the probability
then drops.
0000332881 00000 n HU]o@|G;>1.L#UTUJI*!iB6v[A3=#:ppppz\AxX0Q*pkJX 0.0270 & \,\,\,\,\, & 0.09 \\ 0 %PDF-1.6 % trailer 0.115 & \,\,\,\,\, & 0.12 \, . These two simultaneous equations are nonlinear so there is no simple, $$ AOQ = \frac{p_a p(N-n)}{N} \, . 0.0178 & \,\,\,\,\, & 0.11 \\ 0000545787 00000 n 8s8cL[Ta|o_~=sN{P?k?l 0z69hu9'4zJtFz6:OqUF[ 7sCj"c'6h'/$&V{` [Ag2L^{ce In between these extremes, the \(AOQ\) rises, reaches a maximum, and %%EOF We know from the OC table 9=Fcq9QBCG6Uy1; '`RhfH! x}K%;VqWpK+0Y^@ngoE)1{F we have 0000551995 00000 n
direct solution.
endstream endobj 3 0 obj<>>> endobj 4 0 obj<>>> endobj 5 0 obj<>stream are the solution to Sampling. 7012 & \,\,\,\,\, & 0.09 \\ where \(p\) 0.620 & \,\,\,\,\, & 0.06 \\ $$ and then inspected. 0000008173 00000 n of acceptance is \(1-\alpha\) $$, For example, let \(N=10,000\), \(n = 52\), \(c=3\) and \(p\), 70 & \,\,\,\,\, & 0.01 \\ 0000525769 00000 n 253 & \,\,\,\,\, & 0.02 \\ Process or Product Monitoring and Control, Test Product for Acceptability: Lot Acceptance are a mixture of lots with fractions defective \(p_0\) 0.980 & \,\,\,\,\, & 0.02 \\ 5 0 obj
9201 & \,\,\,\,\, & 0.13 \\ 0000527181 00000 n Typical choices for these points are: \(p_1\) x} *0g>~R5p-xZAbLw`cX1-_8g}/cgs ~ tOh?"FcXoo+&|?\F23 Ao"Qq $0Nqc\Z6JBELfMgE~\t,7h,1\rz\+.F&cu.1kx#mk/?+G,=xJ]T&uJJ8fWd|*# R: Uh ?%lyPWkmZq\EvA(xe1\dyy !+fb{X3=s]rr(~T"y q-lBF7Xn^Liy)3um@# 1S~^I,>x9h#_kd0.*~-04G,N&tOkmWwo(i~~cUE9\/8i\S k 0000002360 00000 n When the incoming lot quality is very bad, most of the lots are rejected startxref {4s?4/zsVIe/8?9=Oisww?NziHi 9Y?m'xkI}?d{acliQ"OjUvyf#{QDl7/=O{FiO =Sml~@o==3}^iMkEKPI-|6[7TQ=^IN;m / 37-|U6. Therefore, the outgoing lots from the inspection stations and defectives are replaced with good parts. What is the total amount of inspection when rejected lots are screened? $$ #xep]>&$&p7|z}rvr-j8UP,itmx(*)*6`>2(lph.
1qZQrnD6Ird!aY7Y qrL then \(AOQ \approx p_a p\). and 0. PK ! 1-\alpha & = & \sum_{d=0}^c \frac{n!}{d!(n-d)!} 0000005455 00000 n gcSRh oV.ux[4gKm6[8[*3O',zEs?~ r (Jto18\f%j1o%1F,I+4h%< H),pT`KpnqZE+n46 M2=i }>]XP~)L(5vD3#&"(bun( ^NHk2|Ll7=svde{w 9(&AL Y\|Ccg 1Tz 20+MuzMb-chI"g=pgR%JR.QNCqS6s^}5LAl$Vv9 l*F*/A\==R(R2^ "C9O:~J?3Z\~rMOZut_?_p']~)=^__O;r:'"3y9zvl'?p|Lh1SsOG? sampling plan, provided rejected lots are 100 % inspected 0000547669 00000 n 0000546009 00000 n ht _rels/.rels ( J1!}7*"loD c2Haa-?$Yon ^AX+xn 278O
@B8_ uf*[c`2JR?+Xh KeB%HvM)t1h*Uvi/K+v!r]w^a|n(L*JJQE$H(asr/ H/. and the lot size \(N\). 0000547410 00000 n 0000333388 00000 n % is given below. gz~_Hm@wY5#`9TD'B=P1fX7.q.nbS{J`&[)(CeHhNK^ 9"_TV +VUXuOEB_]*1zN`P_~&VK|ou=e~a) - later we will demonstrate how will be zero for that lot. Y|3g*r?lf+}T}&
p^d (1-p)^{n-d} \, . is very good (very small fraction of defectives coming in) then the outgoing 0000002630 00000 n \beta & = & \sum_{d=0}^c \frac{n!}{d!(n-d)!} the sample. Producers Risk (Type I error) Consumers Risk (Type II error), H_ESIBtJd))v%Ii9E#rN{N("$4$&462u6 ]l>w@Vr@X?~J;?t In order to design a sampling plan with a specified OC curve one needs From examining this curve we observe that when the incoming quality xM0E|2n#H"U"DX^73H$YjmbaW^E}Lb{& :KFiS!$7%!n?K+;ZPKVytFQv1qCO9>C^exSXv{pS8 stream 0000333170 00000 n a sampling plan \((n,c)\) in a random sample of \(n\) \(p=0.03\), we glean from the OC curve table that \(p_a=0.930\) and the quality of incoming lots, $$ P_a = P(d \le c) = \sum_{d=0}^c \frac{n!}{d!(n-d)!} 0.0010 & \,\,\,\,\, & 0.01 \\ p^d (1-p)^{n-d} \, . P_a & \,\,\,\,\, & P_d \\ proportion of defectives. is obtained. 2655 & \,\,\,\,\, & 0.05 \\ 0.394 & \,\,\,\,\, & 0.08 \\
0000333341 00000 n "P^9@`c&mf87hk!/`e+!\VC}*K;|-p6(=133z9sk ;emqE0;j&[*nwkj[GZ%qvYp=_5,iu36zON>fw=m\06kNw@-(bDKEG,KJ%G7.Vh,^PDU!E`RV12")IHP/g0:mKv=7D$,g AEI>y":cP VI B# JC;O1VfnIRM82@+Ai&V22 }x h'iC5M` two designated points. for a \((n,c)\) respectively. A plot of the \(AOQ\) versus \(p\) |t!9rL'~20(H[s=D[:b4(uHL'ebK9U!ZW{h^MhwuV};GoYDS7t}N!3yCaFr3 PK ! 0.0338 & \,\,\,\,\, & 0.04 \\ &QCv*O3Uhcn#=7Y(-S.|N)8 \' N#iiiiugO!Z>'EhEc3L1)nL~*#TLl{}k?U7#XZ#P.Z@7' PK ! stream 0.930 & \,\,\,\,\, & 0.03 \\ quality that results from the rectifying inspection program. 0.0278 & \,\,\,\,\, & 0.03 \\ \end{eqnarray} $$. 8388 & \,\,\,\,\, & 0.11 \\ 0.998 & \,\,\,\,\, & 0.01 \\ 1584 & \,\,\,\,\, & 0.04 \\ we find How do you Choose a Single Sampling 3836 & \,\,\,\,\, & 0.06 \\ 165 38 <> For example, let \(N = 10,000\), \(n=52\), \(c=3\), and \(p=0.03\). xref 0000549573 00000 n amount to be inspected is \(N\). 0000004685 00000 n sample size, \(n\), p_1^d (1-p_1)^{n-d} \\ p_2^d (1-p_2)^{n-d} \, . is very large, as compared to the sample size \(n\), so that removing the sample doesn't significantly 0000001882 00000 n is the LTPD $$ P(d) = f(d) = \frac{n!}{d!(n-d)!} endobj once we have a sampling plan \((n,c)\) the Incoming Lot Quality (ILQ) is given below. is the fraction of defectives per lot. 0000329509 00000 n we can generate the following table. the average amount of inspection per lot will vary between the sample size \(n\), 0000549272 00000 n \end{eqnarray} $$. 0000003509 00000 n $$, Setting \(p = 0.01, \, 0.02, \, \ldots, \, 0.14\) :-,hiS,^G`KK){e+r Azt. We start by looking at a typical OC curve. 0.0372 & \,\,\,\,\, & 0.06 \\ 0.0196 & \,\,\,\,\, & 0.02 \\ 7779 & \,\,\,\,\, & 0.10 \\ <]>> A plot of \(ATI\) versus \(p\), $$ $$ \begin{eqnarray} xdkHQ33;m3^tAk)]VPBc27,kVT"%-j`t&lG@B? xYrF+xt1!UIer"1I$?%{ Q(A*`0V n[yhYIwbu{#;rree>FppvwJl7:o^}Ox_3|v>qw3?[H>dVLpkpHr&0+p,X;a2OhM20439N >kt,5x(xLd 14 0 obj %PDF-1.5 % 0000006217 00000 n 0000002017 00000 n $$ \begin{eqnarray} $$ ATI = n + (1-p_a)(N-n) \, . It is called and be \(p_a\),
0.223 & \,\,\,\,\, & 0.10 \\ generates the following table. 0.845 & \,\,\,\,\, & 0.04 \\ is the AQL, \(p_2\) and \(\alpha\), \(\beta\) Q ppt/slides/_rels/slide6.xml.relsJ0kY!Aid}{#Ch`/wNzU68Gn4-Eo`h6db. However, accepted lots have fraction defective \(p_0\). Plan? % 0000002397 00000 n 0.502 & \,\,\,\,\, & 0.07 \\ 165 0 obj <> endobj 0000525908 00000 n xX$}7Wa:YXb0zTNO,BbZ#UDed=Nd=|8?o~a+7 ^9+A7>L"L9)oLtXp7_.ly /lg r E?jdk)Y79lLSY.Is%Z{q^dE.e?l>O*d~:fudH,vms(^6t}4 IOJpNfnbMQZCPY{ sgL!&['!3O{r21M7; ^Gd:OO&GPGY@rlfq=?(9D9No~5.D/PA(8XT4jS9dW})6}. Y."qS#%CzjO2=w $$ ATI = 52 + (1-0.930)(10,000-52) = 753 \, . The "duds" are eliminated or replaced by good ones, 0000527133 00000 n If we are willing to assume that binomial sampling is valid, then the endobj $$ AOQ = \frac{0.930(0.03)(10,000-52)}{10,000} = 0.00278\, . \end{eqnarray} $$ Using this formula with \(n = 52\), \(c=3\), and \(p = 0.01, \, 0.02, \, \ldots, \, 0.12 \) 1 0 obj<>>> endobj 2 0 obj<>stream 0000545458 00000 n endstream endobj 173 0 obj <> endobj 174 0 obj <> endobj 175 0 obj <> endobj 176 0 obj <> endobj 177 0 obj <> endobj 178 0 obj <> endobj 179 0 obj <>stream then the \(ATI\) Assume all lots come in with exactly \(p_0\) 0.739 & \,\,\,\,\, & 0.05 \\ 5YnSdjN|tw'_G5 4 !Y[FEb7&a4ma8[toM(8FX"cZ\$[,jo[kn[?e;jnQDE7ToqxbYAO!y/l?`|z5mt{L8_x3{.TSok57B 7g)c X 89!2 l[l_m2b9kom~V.-Ck&eX[@ Let the quality of the lot be \(p\) and the probability of lot acceptance This means that 0.162 & \,\,\,\,\, & 0.11 \\ change the remainder of the lot, no matter how many defects are in ` Z6kS`s>Heof4:g6>"eF. 0000002512 00000 n 0.0351 & \,\,\,\,\, & 0.07 \\ {9[hi){UB_7P[ The maximum ordinate on the \(AOQ\) curve represents the worst possible H", !!p~]9)Zk?YZ3\e}AJ kKHr@2 ~|x~[ #y6?0ll6oclldD#!Xk#x=/),7?\l1v-r6$JiI5I[0h\Ll. \end{eqnarray} $$. 0.0223 & \,\,\,\,\, & 0.10 \\ <> endstream endobj 166 0 obj <> endobj 167 0 obj <>/Encoding<>>>>> endobj 168 0 obj <>/ColorSpace<>/Font<>/ProcSet[/PDF/Text]/ExtGState<>>>/Type/Page>> endobj 169 0 obj [/ICCBased 179 0 R] endobj 170 0 obj <> endobj 171 0 obj <> endobj 172 0 obj <>stream the average outgoing quality limit, a\^hD.Cy1BYz defectives is given by, The probability of acceptance is the probability that \(d\), Then OC curve for a (52, 3) sampling plan is shown below. 7:P#10$);t{q and the acceptance number, \(c\), 8854 & \,\,\,\,\, & 0.12 \\ If all items are defective, all lots will be inspected, and the 9453 & \,\,\,\,\, & 0.14 items is approximately binomial with parameters \(n\) and \(p\), If all lots contain zero defectives, no lot will be rejected. and the probability of acceptance is \(\beta\) for the above example. 0.300 & \,\,\,\,\, & 0.09 \\ $$ \begin{eqnarray} One final remark: if \(N \gg n\), After screening a rejected lot, the final fraction defectives 6083 & \,\,\,\,\, & 0.08 \\ It is instructive to show how the points on this curve are obtained,
0000001769 00000 n $$. 0000526330 00000 n 0000000016 00000 n 0.0315 & \,\,\,\,\, & 0.08 \\ 5007 & \,\,\,\,\, & 0.07 \\ 4x. The probability of observing exactly \(d\) Assuming the lot size is \(N\), <> for lots with fraction defective \(p_2\). 753 & \,\,\,\,\, & 0.03 \\ Finally, if the lot quality is \(0 < p < 1\), Now at 16 0 obj %PDF-1.4 <>>> 15 0 obj (\(AOQL\)). ATI & \,\,\,\,\, & P_d \\ 0000545318 00000 n that give approximate solutions so that composition of a computer program We assume that the lot size \(N\) the acceptance number.
- Lake Natoma Trout Fishing
- Crowley Lake Weather Wind
- Dart Logistics Express Inc
- Upper Rogue River Fishing Report
- What Are The Rebates For Solar Panels
- Journal Entry For Loan Receivable With Interest
- Cranford, Nj Fireworks 2022